

www.astesj.com 25

Virtual Memory Introspection Framework for Cyber Threat Detection in Virtual Environment

Himanshu Upadhyay*, Hardik Gohel, Alexander Pons, Leo Lagos

Applied Research Center, Florida International University, Miami, 33172, United States

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 01 November, 2017
Accepted: 13 December, 2017
Online: 18 January, 2018

 In today’s information based world, it is increasingly important to safeguard the data
owned by any organization, be it intellectual property or personal information. With ever
increasing sophistication of malware, it is imperative to come up with an automated and
advanced methods of attack vector recognition and isolation. Existing methods are not
dynamic enough to adapt to the behavioral complexity of new malware. Widely used
operating systems, especially Linux, have a popular perception of being more secure than
other operating systems (e.g. Windows), but this is not necessarily true. The open source
nature of the Linux operating system is a double edge sword; malicious actors having full
access to the kernel code does not reassure the IT world of Linux’s vulnerabilities. Recent
widely reported hacking attacks on reputable organizations have mostly been on Linux
servers. Most new malwares are able to neutralize existing defenses on the Linux operating
system. A radical solution for malware detection is needed – one which cannot be detected
and damaged by malicious code. In this paper, we propose a novel framework design that
uses virtualization to isolate and monitor Linux environments. The framework uses the well-
known Xen hypervisor to host server environments and uses a Virtual Memory Introspection
framework to capture process behavior. The behavioral data is analyzed using
sophisticated machine learning algorithms to flag potential cyber threats. The framework
can be enhanced to have self-healing properties: any compromised hosts are immediately
replaced by their uncompromised versions, limiting the exposure to the wider enterprise
network.

Keywords :
Cybersecurity,
Virtualization,
Linux threat detection,
Hypervisor,
Feature selection technique,
Memory forensic analysis,
Virtual machine introspection

1. Introduction

Dependency on computer systems has been growing
exponentially in recent years. Government offices and business
organizations are major targets of malicious actors for stealing
highly valuable data. These entities are major Linux adopters
nowadays because of its reputed safety and security. They are
attempting to protect themselves from cyberattacks with digital
defense techniques like encryption, firewalls and heuristic or
signature scanning packages. Meanwhile, the number of attacks
that involve infiltrating military data centers, targeting power
grids, and stealing trade secrets from both private and public
organizations continues to increase. The detection, response and
reporting of these kinds of intrusions as well as other incidents
involving computer systems, are crucial for cybersecurity
professionals. This paper proposes a Virtual Memory Introspection
based framework for detection, analysis and monitoring of
malware behavior using memory forensics, during cyberspace

attacks in a virtualized environment. The framework provides
advanced instrumentation tools for control and monitoring of
malware, fine-grained introspection of operating system Kernel
and user process behavior using the well-known LibVMI
technology, and analysis of behavioral data using state-of-art
machine learning techniques. In study of research literature, one of
the major methods of malware detection that has emerged over the
years is Linux memory forensics [1] [2]. A number of authors have
described novel detection systems using Memory Forensics, or
using kernel data structure invariants as a reference frame to
identify rootkit intrusions [3] [4]. The goal of this test technology
is to facilitate threat assessment of malware, to understand its
goals, and degrade impact on the compromised systems [5].

Further, as cyber-attacks continues to expand and the
sophistication of the adversaries grows, defenders must adapt
quickly in order to survive. There are numerous kinds of malware
prevalent today, including Backdoors, Bots, Downloaders and
Droppers, Ransomware, Rootkits, Scareware, Spyware, Exploits,
Logic Bombs, Trojans, Viruses, Worms, etc. The detection,

ASTESJ

ISSN: 2415-6698

*Dr. Himanshu Upadhyay, Email: upadhyay@fiu.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 25-29 (2018)

www.astesj.com

Special issue on Advancement in Engineering Technology

https://dx.doi.org/10.25046/aj030104

http://www.astesj.com/
mailto:upadhyay@fiu.edu
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030104

H. Upadhyay et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 25-29 (2018)

www.astesj.com 26

response and reporting of these kinds of intrusions as well as other
incidents involving computer systems, are crucial for
cybersecurity professionals. Present static methods used by anti-
viruses are insufficient to stop advanced malware threats, which
are capable of disabling the anti-viral software via root-kit
mechanisms.

2. Virtualization & Data Analytics Framework

The proposed framework has the following major components as
shown in Figure1:

2.1. Virtualization

The virtual machines, which are monitored for malware
attacks, are collectively called the system under test (SUT). This
system is hosted on a Xen hypervisor based virtualization
platform. The behavioral data on the guest VMs is captured
through Virtual Memory Introspection (VMI) using the LibVMI
framework

2.2. Data Analytics

This platform consists of various traditional machine learning
algorithms used to train the models and perform prediction using
various test vectors consisting of malware and rootkits on the
virtual machines (SUT). In this proposed framework, the authors
are building an advanced data analytics platform on the database
server, R runtime with in-memory analytics providing the scale
and performance. Various traditional machines learning
algorithms like Random Forest, Support Vector Machines,
Logistics regression etc. will be utilized to perform Data Analytics.
This platform analyzes the memory data structure captured on the
VMI framework using cutting-edge machine learning algorithms.
These algorithms are used to build the model to predict the
malware behavior and display the results.

2.3. Test Control Center

The Test Control Center is an application that provides control
and administration of the entire framework with an intuitive web
based interface. The operator can create virtual machines (SUT),
install benign applications and malware, capture behavioral
information and use the Data Analytics platform to build the model
and test virtual machines for malware using various traditional
machine learning algorithms. Test Control Center is a centralized
application to manage the test bed and execute various test cases.
In the proposed framework, the authors are developing various
modules like virtual machine management, network map, test case
management, model management, configuration, testbed
administration and help.

The three platforms working together will enable an
organization to detect malware almost in real time and monitor its
behavior in a virtual environment. The user provides a set of well-
defined inputs to the virtualization platform based on
predetermined test cases, and captures the kernel data structures
information and transfers it to the Data Analytics platform. The
Data Analytics platform uses traditional machine learning
algorithms to build the model and predicts results based on the
information extracted from guest virtual machine memory and

displays the results on the Test Control Center. The following
diagram in Figure 1 provides the overall system design of the
framework:

Figure 1: Virtualization & Data Analytics Framework System Diagram

The various components of the virtualization platform are
discussed below.

I. VM Image Repository

Images of the different virtual machines will be stored in this
location. It provides the user the ability to select the virtual
machine images that will create the virtual machines for SUT with
different configurations.

II. Malware Listener and Installer

This module listens to the command from the malware
management module and communicates with the malware installer
on the virtual machine to install the selected malware.

III. VM Snapshot Repository

This module will store the snapshots of normal operation
which will later be used to roll back to the clean state after the test
execution.

IV. Multiple Linux VMs

These are the guest virtual machines created by the operator
based on predefined configurations.

V. Kernel Agent

Security/kernel agent manages all the drivers to extract the
kernel data structures from the SUT. They are deployed on DOM
0 which is the secured location on the hypervisor with required
privileges.

VI. Kernel Drivers

These the individual drivers which are used for smart memory
acquisition of the kernel data structures from the SUT. These
drivers use the LibVMI libraries for virtual memory introspection
from the Dom0 level to extract kernel data structures. They are
managed by Security/Kernel Agent.

http://www.astesj.com/

H. Upadhyay et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 25-29 (2018)

www.astesj.com 27

VII. Kernel Monitor

This module communicates with data analytics platform and
sends the data extracted by the Security/kernel agent to the listener
on the data analytics platform to store the data in to the database.

VIII. Kernel Agent Listener

The Agent Listener plays a crucial role in the virtualization
framework. This module communicates with the security/kernel
monitor in the virtualization framework, and receives the extracted
data from the security/kernel agent and stores it into the central
database.

3. Virtual Memory Introspection (VMI) Framework

The VMI platform of this framework is built on the “Xen
Hypervisor” which enables the operator to create multiple virtual
machines with different configuration and perform system testing
with the environment. The Linux machines are used as SUT, to be
monitored for malware intrusion are hosted on this hypervisor.
Xen hypervisor [6] provides two security domains for the hosted
virtual machines. The virtual machine running under Dom0
(Domain 0) on the Hypervisor controls the resource allocation for
the virtual machines that runs the Linux Guest operating system
[7].

The major key objectives of virtualization framework are listed
below:

I. Develop innovative ways to detect and monitor malware
in a virtualized testbed with smart memory acquisition.

II. Deployment of virtualized environments along with
advanced tools developed through this research for
control and monitoring of the cyberspace test
environment.

III. Cyber-attack emulation through infection and
propagation of simulated endpoints.

IV. Virtual machine introspection, data collection, and
monitoring of various aspects of the infrastructure
through a centralized system.

V. Display results on the Test Control Center to monitor the
impact of malware on SUT.

The SUT can be Linux or Windows guest virtual machines.
Using the Test Control Center, the operator is able to create guest
VMs on the Xen hypervisor from a virtual machine repository,
introduce pre-determined malware into them, and capture kernel
data structure information and stores them into the central
database. We have developed an application called “Kernel Agent”
that runs on the Dom0 virtual machine, and uses kernel drivers to
perform smart memory acquisition on the guest operating system.
This kernel information, which includes process details, memory
data structures, and file system information, is written to a central
database for data analytics.

Xen hypervisor is used to host, configure, and control the guest
Linux virtual machine that will be tested for malware. The
introspection is carried out through the “LibVMI” framework in
conjunction with Google’s “Rekall” profiles. The Rekall profile is

a JSON file that contains the address mappings of all Linux Kernel
data structures. By integrating LibVMI with Google Rekall, the
process of extracting Kernel configuration parameters and data
structures at run-time can be automated. This facilitates the smart
memory acquisition of process behavioral data from the kernel.
We are using Google’s “Go” programming language for writing
the introspector application, and to push the acquired data to the
central database. The Go programming language can integrate with
suitable C/C++ libraries, and significantly reduces the time needed
for development and testing new build of each module. It provides
better control over distribution and parallelization mechanisms of
the Security Agent. We are using “Libvirt” library for management
of the guest virtual machines through a custom built Introspector.
Introspection requests are serviced by the LibVMI library, while
the Libvirt library is used to facilitate the creation, starting,
stopping, pausing and resuming of the guest Linux virtual
machines [8].

The Introspector is comprised of several core subsystems that
are necessary for lifecycle management and introspection of
virtual machines on a host. The Introspector also maintains two
socket connections that listen to requests for introspection or
virtual machine administration coming from the Test Control
Center.

Figure 2: Proposed Virtual Machine Introspection Framework

Introspector: startup

 Introspector (introspector.go) builds a Settings object
(settings.go) by reading the values in the introspector.conf settings
file. The configuration file is used to determine which IP/Port
combination to use for handling virtual machine administration
requests and introspection requests. The Introspector will also start
the StateManager that manages a SQLite database containing the
current state of the virtual machines in the system.

Figure 3: Introspector setup with Database

http://www.astesj.com/

H. Upadhyay et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 25-29 (2018)

www.astesj.com 28

Next, a thread is spawned that opens a socket connection to
listen for incoming requests for virtual machine administration
from the Test Control Center while the main Introspector thread
waits on another socket for incoming introspection requests.
Administration requests are XML requests that have the root node
<LibvirtServerMessage>

4. Research on Kernel Data Structures

The analysis conducted on the footprint of a process in kernel
space is in near real-time, to distinguish between benign and
malicious processes. The Linux Kernel maintains data structures
that contain information about every action and resources used by
a process. The study thus far has identified 15 features from 118
features which can effectively distinguish between benign and
malicious processes [9] [10]. The next steps in the pipeline is to
perform virtualization to extract threads, system call , invariant
data structures like system call table and interrupt descriptor table,
IP addresses, network sockets, URLs, open files, passwords,
catches, clipboards and other user generated content, encrypted
keys, and configurations of hardware and software [11].

5. Benign and Malware Applications

We have also performed research to extract the kernel data
structures from the Linux kernel task structure using LibVMI
library. The following Benign processes and Malwares samples
have been identified to be installed on the Linux virtual machines.
The Linux kernel version under consideration as of the writing of
this paper is 3.16.0-23- generic.ko in Ubuntu 14.04 [11] [12].

GUI Applications CLI Applications

1) Firefox - Web
Browser
2) Thunderbird - Email
client application
3) gpaint - Paint
Application
4) Libre - Office writer
5) Rythmbox - Music
player
6) Connectagram - Word
unscrambling game
7) Arora - Cross platform
web browser
8) Empathy- Internet
messaging application
9) Alarm clock
10) Shotwell- Photo
manager

1) Alpine-Pico- Is a text editor, uses
the pine email client for writing
email messages. Run from the
terminal as pico, pico.alpine
2) Aaphoto- An image manipulation
tool for automatic color correction of
photos
3) ACL2- Programming language in
which user can model computer
systems and a tool to help prove
properties of those models.
4) Python- Programming language
5) Gedit Text editing tool
6) Calcoo - scientific calculator
7) Calcurse- text based calendar and
todo manager
8) Clamav-daemon- antivirus utility
for unix-scanner daemon run from
the terminal
9) Gzip- Zipping application

6. Linux Kernel Data Structure Extraction

At the outset we are going to extract the following task
structure list from Linux data structures. Based on our research,
the following list of features has been identified for extraction to
test the virtualization framework in the pilot stage. These are the

primary features of the processes that will run in the kernel of the
Linux virtual machine at runtime [13] [14].

Sr.
No.

Features’
Name

Description

1 map_count Number of memory regions of a
process

2 page table
lock

Used to manage the page table entries

3 hiwater rss Number of page frames that a process
owns

4 shared_vm Number of pages in shared file
memory mapping of a process

5 exec_vm Number of pages in exec. memory
mapping of process

6 nr_ptes Number of page tables owned by a
process

7 utime Execution time of a process in user
mode (tick count)

8 stime Execution time of a process in kernel
mode (tick count)

9 nvcsw Volunteer context switches of a
process

10 nivcsw Involuntary context switches
11 total_vm Size of process’s address space in

terms of Number of pages
12 min_flt Minor page faults of a process
13 alloc

lock.raw
lock.slock

Used to lock memory manager, files
and file system etc.

14 hiwater_vm Max Number of pages appeared in
memory region of process

15 fs.count fs_struct’s usage count to indicate the
restrictions

7. Data Analytics and Results

 The research on data analytics is currently on-going [15] [16].
The Data Analytics platform consists of centralized database
servers for analytics and processing. The research will be focused
on identifying the classification and anomaly detection machine
learning algorithms that includes open source and commercial
platforms, libraries with these platforms [17] [18] to detect
malware [19] [20] that primarily focus on the Linux data structure
extracted by the VMI Framework.

 Once the framework is narrowed down and tuned as a viable
solution for malware detection, the results will be summarized to
demonstrate which machine learning models are powerful for
malware detection and monitoring. The research outcome will
consist of three components: memory data structures, algorithms
with pros/cons and machine learning model performance data.

8. Conclusion and Future Work

The goal of the VMI framework research is to provide solid
foundation for security of the Linux operating system as well as
the capabilities to identify and monitor cyber threats in virtual
environment. The key challenges of this research is to identify
various data structures affected by modern malware, and in-depth

http://www.astesj.com/

H. Upadhyay et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 25-29 (2018)

www.astesj.com 29

examination of various machine learning algorithms with memory
forensics to solve key cybersecurity issues.

The focus of this research is to develop a system that can work
with the latest Linux operating systems providing memory
forensics capability in a virtual environment. In the future, we plan
to explore all possible ways of data analytics with big data
technologies and deep learning. With sufficient time and effort, the
development of this framework can result in an extremely
powerful system for early threat detection and defense.

Acknowledgment
This research is supported by Department of Defense (DOD) –
Test Resource Management Center (TRMC), USA. We thank our
colleagues who provided insight and expertise, directly or
indirectly, that greatly assisted the research.

References

[1] M H Ligh, A Case, J Levy, A Walters. “The Art of Memory Forensics”, 2014
[2] M Wade, “Memory Forensics: Where to Start” at

http://www.forensicmag.com/ article/2011/06/ memory-forensics-where-
start, 2011

[3] Baliga, A., Ganapathy, V. and Iftode, L., Detecting kernel-level rootkits using
data structure invariants. IEEE Transactions on Dependable and Secure
Computing, 8(5), pp.670-684, 2011.

[4] D. Levy, H. A. Gohel, H. Upadhyay, A. Pons and L. E. Lagos, "Design of
Virtualization Framework to Detect Cyber Threats in Linux
Environment," 2017 IEEE 4th International Conference on Cyber Security
and Cloud Computing (CSCloud), New York, NY, pp. 316-320, 2017

[5] H. Gohel. “Introduction to Network & Cyber Security”, 2015
[6] Xen Project available at https://www.xenproject.org/, 2013
[7] H. Gohel. "Looking Back at the Evolution of the Internet." CSI

Communications - Knowledge Digest for IT Community Vol. 38 Issue. 6 pp.
23-26, 2014

[8] N Joshi, D.B.Choksi, “Implementation of process forensic for system calls”,
International Journal of Advanced Research in Engineering and Technology
(IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Vol. 5, Issue.
6, pp. 77-82, 2014

[9] Blackbag Team, “MEMORY FORENSICS”, at
https://www.blackbagtech.com/blog/2016/03/07/ windows-memory-
forensics/2016

[10] Farrukh Shahzad, M. Shahzad, Muddassar Farooq, “In-execution dynamic
malware analysis and detection by mining information in process control
blocks of Linux OS” Information Sciences, Volume 231, pp. 45-63, ISSN
0020-0255,2013

[11] N Joshi, D. B. Choksi, “Implementation of Process Forensic for System
Calls”, International Journal of Advanced Research in Engineering &
Technology (IJARET), Vol. 5, Issue. 6, pp. 77 - 82, ISSN Print: 0976-6480,
ISSN Online: 0976-6499, 2014.

[12] H. Upadhyay, H. Gohel “Security Corner: Cyber Threat Analysis with
Memory Forensics”, CSIC – Knowledge Digest for IT Community, Vol. 40,
Issue. 11, ISSN 0970-647X, pp. 17-19, 2017

[13] H. Upadhyay, H. Gohel “Design of Advanced Cyber Threat Analysis
Framework for Memory Forensics”, International Journal of Innovative
Research in Computer and Communication Engineering, ISSN (Online):
2320-9801, ISSN (Print): 2320-9798, Vol. 5, Special Issue 2. pp.132-137,
2017

[14] F. Shahzad, S. Bhatti, M. Shahzad and M. Farooq, "In-Execution Malware
Detection Using Task Structures of Linux Processes," 2011 IEEE
International Conference on Communications (ICC), Kyoto, pp. 1-6, 2011.

[15] Z. Gu, Z. Deng, D. Xu and X. Jiang, "Process Implanting: A New Active
Introspection Framework for Virtualization," IEEE 30th International
Symposium on Reliable Distributed Systems, Madrid, pp. 147-156, 2011

[16] Hal Pomeranz, “Detecting Malware with Memory Forensics”, at
http://www.deer-run.com/~hal/ Detect_Malware_w_Memory_Forensics.pdf,
2015

[17] Hizver, Jennia, and Tzi-cker Chiueh. "Real-time deep virtual machine
introspection and its applications." ACM SIGPLAN Notices. Vol. 49. No. 7.
ACM, 2014.

[18] Hardik, Gohel. “Data Science - Data, Tools & Technologies.” CSI
Communications Knowledge Digest for IT Community, Vol. 39 Issue. 3, pp.
8-10, 2015

[19] H Gohel, P Sharma. “Study of Quantum Computing with Significance of
Machine Learning.” CSI Communications - Knowledge Digest for IT
Community, Vol. 38, Issue. 11, pp. 21-23, 2015

[20] E Mariconti, O Lucky, P. Andriotis, “Detecting Android Malware by Building
Markov Chains of Behavioural Models”, NDDS’17, San Diego, USA, 2017

http://www.astesj.com/

	2. Virtualization & Data Analytics Framework
	2.1. Virtualization
	2.2. Data Analytics
	2.3. Test Control Center

	3. Virtual Memory Introspection (VMI) Framework
	4. Research on Kernel Data Structures
	5. Benign and Malware Applications
	6. Linux Kernel Data Structure Extraction
	7. Data Analytics and Results
	8. Conclusion and Future Work
	Acknowledgment
	References

